Weighted Norm Estimates and Representation Formulas for Rough Singular Integrals

نویسنده

  • Harri Ojanen
چکیده

Weighted norm estimates and representation formulas are proved for nonhomogeneous singular integrals with no regularity condition on the kernel and only an L logL integrability condition. The representation formulas involve averages over a starshaped set naturally associated with the kernel. The proof of the norm estimates is based on the representation formulas, some new variations of the Hardy-Littlewood maximal function, and weighted Littlewood-Paley theory. AMS Mathematics Subject Classification: Primary 42B20; Secondary 42B25

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An equivalent representation for weighted supremum norm on the upper half-plane

In this paper, rstly, we obtain some inequalities which estimates complex polynomials on the circles.Then, we use these estimates and a Moebius transformation to obtain the dual of this estimates forthe lines in upper half-plane. Finally, for an increasing weight on the upper half-plane withcertain properties and holomorphic functions f on the upper half-plane we obtain an equivalentrepresenta...

متن کامل

Weighted norm inequalities for a class of rough singular integrals

Weighted norm inequalities are proved for a rough homogeneous singular integral operator and its corresponding maximal truncated singular operator. Our results are essential improvements as well as extensions of some known results on the weighted boundedness of singular integrals.

متن کامل

A Note on Weighted Bounds for Rough Singular Integrals

We show that the L(w) operator norm of the composition M◦TΩ, where M is the maximal operator and TΩ is a rough homogeneous singular integral with angular part Ω ∈ L∞(Sn−1), depends quadratically on [w]A2 , and this dependence is sharp.

متن کامل

Sharp maximal function estimates for multilinear singular integrals

A new proof of a weighted norm inequality for multilinear singular integrals of Calderón-Zygmund type is presented through a more general estimate involving a sharp maximal function. An application is given to the study of certain multilinear commutators.

متن کامل

Weighted Norm Inequalities, Off-diagonal Estimates and Elliptic Operators Part I: General Operator Theory and Weights Pascal Auscher and José

This is the first part of a series of four articles. In this work, we are interested in weighted norm estimates. We put the emphasis on two results of different nature: one is based on a good-λ inequality with two parameters and the other uses Calderón-Zygmund decomposition. These results apply well to singular “non-integral” operators and their commutators with bounded mean oscillation functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998